Iterative exponential filtering for large discrete ill-posed problems
نویسندگان
چکیده
We describe a new iterative method for the solution of large, very ill-conditioned linear systems of equations that arise when discretizing linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by measurement errors. Our method applies a lter function of the form ' (t) := 1 ?exp(?t 2) with the purpose of reducing the innuence of the errors in the right-hand side vector on the computed approximate solution of the linear system. Here is a regularization parameter. The iterative method is derived by expanding ' (t) in terms of Chebyshev polynomials. The method requires only little computer memory and is well suited for the solution of large-scale problems. We also show how a value of and an associated approximate solution that satisses the Morozov discrepancy principle can be computed eeciently. An application to image restoration illustrates the performance of the method.
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملThe structure of iterative methods for symmetric linear discrete ill-posed problems
The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted mini...
متن کاملOn the Choice of Subspace for Iterative Methods for Linear Discrete Ill-posed Problems
with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular values of different orders of magnitude. In particular, A is severely ill-conditioned. Some of the singular values of A may be vanishing. We allow m ≥ n or m < n. The right-hand side vector b̃ is not required to be in the range of A. Linear systems of equations of the form (1) with a matrix of ill-determined rank are ...
متن کاملSquare regularization matrices for large linear discrete ill-posed problems
Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...
متن کاملOn regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems
Abstract. For large-scale symmetric discrete ill-posed problems, MINRES and MR-II are commonly used iterative solvers. In this paper, we analyze their regularizing effects. We first prove that the regularized solutions by MINRES have filtered SVD forms. Then we show that (i) a hybrid MINRES that uses explicit regularization within projected problems is generally needed to compute a best possibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 83 شماره
صفحات -
تاریخ انتشار 1999