Iterative exponential filtering for large discrete ill-posed problems

نویسندگان

  • Daniela Calvetti
  • Lothar Reichel
  • Qin Zhang
چکیده

We describe a new iterative method for the solution of large, very ill-conditioned linear systems of equations that arise when discretizing linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by measurement errors. Our method applies a lter function of the form ' (t) := 1 ?exp(?t 2) with the purpose of reducing the innuence of the errors in the right-hand side vector on the computed approximate solution of the linear system. Here is a regularization parameter. The iterative method is derived by expanding ' (t) in terms of Chebyshev polynomials. The method requires only little computer memory and is well suited for the solution of large-scale problems. We also show how a value of and an associated approximate solution that satisses the Morozov discrepancy principle can be computed eeciently. An application to image restoration illustrates the performance of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

The structure of iterative methods for symmetric linear discrete ill-posed problems

The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted mini...

متن کامل

On the Choice of Subspace for Iterative Methods for Linear Discrete Ill-posed Problems

with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular values of different orders of magnitude. In particular, A is severely ill-conditioned. Some of the singular values of A may be vanishing. We allow m ≥ n or m < n. The right-hand side vector b̃ is not required to be in the range of A. Linear systems of equations of the form (1) with a matrix of ill-determined rank are ...

متن کامل

Square regularization matrices for large linear discrete ill-posed problems

Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...

متن کامل

On regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems

Abstract. For large-scale symmetric discrete ill-posed problems, MINRES and MR-II are commonly used iterative solvers. In this paper, we analyze their regularizing effects. We first prove that the regularized solutions by MINRES have filtered SVD forms. Then we show that (i) a hybrid MINRES that uses explicit regularization within projected problems is generally needed to compute a best possibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 83  شماره 

صفحات  -

تاریخ انتشار 1999